Using symmetry in robust model fitting
نویسندگان
چکیده
منابع مشابه
Using symmetry in robust model fitting
The pattern recognition and computer vision communities often employ robust methods for model fitting. In particular, high breakdown-point methods such as least median of squares (LMedS) and least trimmed squares (LTS) have often been used in situations where the data are contaminated with outliers. However, though the breakdown point of these methods can be as high as 50% (they can be robust t...
متن کاملAdaptive-Scale Robust Estimator Using Distribution Model Fitting
We propose a new robust estimator for parameter estimation in highly noisy data with multiple structures and without prior information on the noise scale of inliers. This is a diagnostic method that uses random sampling like RANSAC, but adaptively estimates the inlier scale using a novel adaptive scale estimator. The residual distribution model of inliers is assumed known, such as a Gaussian di...
متن کاملRobust Multi-Model Fitting Using Density and Preference Analysis
Robust multi-model fitting problems are often solved using consensus based or preference based methods, each of which captures largely independent information from the data. However, most existing techniques still adhere to either of these approaches. In this paper, we bring these two paradigms together and present a novel robust method for discovering multiple structures from noisy, outlier co...
متن کاملActive Appearance Model Fitting under Occlusion using Fast-robust PCA
The Active Appearance Model (AAM) is a widely used method for model based vision showing excellent results. But one major drawback is that the method is not robust against occlusions. Thus, if parts of the image are occluded the method converges to local minima and the obtained results are unreliable. To overcome this problem we propose a robust AAM fitting strategy. The main idea is to apply a...
متن کاملEffective Sampling: Fast Segmentation Using Robust Geometric Model Fitting
Identifying the underlying models in a set of data points contaminated by noise and outliers, leads to a highly complex multi-model fitting problem. This problem can be posed as a clustering problem by the projection of higher order affinities between data points into a graph, which can then be clustered using spectral clustering. Calculating all possible higher order affinities is computationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2003
ISSN: 0167-8655
DOI: 10.1016/s0167-8655(03)00156-9